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Goals 

 To extend the feedback design method to quantum 

domain 

 To apply the result to very important quantum 

control problems 

 To demonstrate the effectiveness of the obtained 

results 

To draw your attention to this new growing and 

challenging field 
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Early-Stage History 

  1980s  Tarn Group (US) 

Modeling, controllability and invertibility, non-
demonition filtering 

  1980s  Belavkin (Britain) 

Filtering and stochastic control 

  Late 1980s –1990s Rabitz Group (US) 

Optimal control theory and Learning control 
in ultrafast chemical control systems  

 Late 1980s –1990s Tannor, Kosloff and Rice (US) 

Bond-selective control of chemical reactions 



Opportunities for Quantum Control  

Extremely high-precision measurement 

Ultracold systems in condensed matter science 

High-intensity and short-wavelength light sources 

Ultrafast control on the motion of atoms/electrons 

Quantum engineering on the nanoscale structures 

Quantum computation, data security and encryption  

From “Controlling the quantum world: the science of atoms, 

molecules and photons”, Physics 2010, National Research 

Council (2007) 



Successful experiments 

have been reported to date 

over 150 systems in over 

20 physical and chemical 

categories 

Laser Control of Molecules 

Research Groups  

• H. Rabitz (Princeton) 

• T. Weinacht (Stonybrook) 

• R. Levis (Temple) 

• G. Gerber (Würzberg) 

• M. Zanni (Wisconsin) 

• L. Woeste (Berlin) 

• T. Brixner (Würzberg) 

• ….. 



  Nuclear Magnetic Resonance (NMR) 

  Superconducting Josephson Junction 

  Quantum Tunneling 

  Ion Trap 

  Quantum Dot 

  Cavity QED 

Physical Implementations of 

Quantum Computer 



Nobel Prize in Physics, 2012 

In the recent Nobel Prize awards 2012, 

Serge Haroche and David Wineland 

were jointly awarded the Nobel Prize 

for Physics for their "ground-breaking 

experimental methods that enable 

measuring and manipulation of 

individual quantum systems".  



Classical Mechanics 

Determine the position of a particle at any time,  

x(t) 

F ma

To determine x(t), using 
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Elements of Quantum Mechanics 

A quantum particle is described by its wavefunction  

(t, x) determined by the Schrödinger equation 

 

 

where the ket             represents the quantum state  
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Probability of finding the particle  

between x and x + dx at time t 

Evolution is unitary to preserve the probability 

( , )t x



Non-Classical Features 

Heisenberg Uncertainty Principle 

Two non-commuting observables can not be 

measured simultaneously accurately.  

2
   ˆ ˆ[ , ]x p i x p

NO classical trajectory can be defined for a 

quantum particle ! 

For example: 

where  [., .] is the commutator 



Non-Classical Features 

Entanglement 

   tensor product + superposition 

 
2 2  

n

H C CSystem of n qubits                               ( dim = 2n ) 

Entangle 250 atoms together and one can 

simultaneously encode more numbers than there 

are atoms in the known universe! 



Non-Classical Features 

Quantum Measurement 

Wavefunction collapses instantaneously and 

randomly after measurement 

2


2
MEASUREMENT 



Continuous Measurements 

Applications to  

 Photon Detection 

 Currently applied to Quantum Dots  

Significant progress in the late 1970s and 80s 

shows that, within the axiomatic framework of 

Quantum Mechanics, a consistent formulation of 

measurement theory was possible based on Positive 

Operator Value Measure (POVM) in continuous 

time. 



Measurement-based feedback 

(Classical control) 

Coherent feedback 

(Quantum control) 

Quantum feedback schemes 

Essential distinction: the control loop is quantum or not ! 



Given a quantum control system: 

𝑥 = 𝑓 𝑥 + 𝑔𝑖(𝑥)𝑢𝑖(𝑥)

𝑖

 

1.Measurement-based feedback 
(classical Control) 

𝑥 = 𝑓 𝑥 +  𝑔𝑖(𝑥)𝑢𝑖(𝑥)𝑖 ;     𝑦 = ℎ 𝑥  

design 𝑢𝑖 𝑥 = 𝐾(ℎ(𝑥))  

2.Coherent feedback (Quantum 
Control) 

𝑥 = 𝑓 𝑥 + 𝑔𝑖(𝑥)𝑢𝑖(𝑥)

𝑖

+ 𝑙𝑗(𝑥)𝑣𝑗(𝑥)

𝑗

 

adding  𝑙𝑗 𝑥 𝑣𝑗 𝑥 ,𝑗  then we could design 𝑢𝑖(𝑥),𝑣𝑗(𝑥) 



The First Problem: Motivations 

A long-standing question in quantum control 

     Is there any problem that can be accomplished by quantum control, but 

not by classical control? 

 

Nonlinear quantum optics on chip 

     Natural nonlinearity is too weak to demonstrate novel quantum optical 

phenomena. 

     Is there any way to artificially generate and enhance the desired 

nonlinearity? 

Science 325, 1221 (2009) 

Nature Photonics 3, 346 (2009) 



The aims of our work 

To establish a paradigm for the first question 

     

    Classical feedback cannot generate quantum nonlinearity   

    (see our work in Physical Review A 82, 022101 (2010)); 

     

    However, full quantum feedback can do It ! 

 

The second question will be answered in the  

examples shown later 



Previous work in coherent feedback 

General theory of linear coherent feedback 

     Hudson-Parthasarathy (HP) model: IEEE TAC 54, 2530 (2009) 

      

     Quantum transfer function: IEEE TAC 48, 2107 (2003),  

     Phys. Rev. A 81, 023804 (2010). 

 

Existing methods are not applicable to nonlinear 

coherent feedback !   



The proposed feedback system 

Open-loop system Closed-loop system 



Our main result 

𝐻eff = 𝐻 
Uncontrolled 
Hamiltonian

  +
𝑖

2
𝐺0

Ehanced by 

quantum amplifier

𝐿 + 𝐿† 𝑆†𝐿𝑓 − 𝐿 𝑆𝑓
† 𝐿 + 𝐿†

Control induced 
nonlinear term

 

+ 𝐺0𝐴 cosϕ 𝐿 + 𝑖 sinϕ 𝑆†𝐿𝑓 + h.c.

This term is introduced to cancel the linear term

 

𝜌  = −𝑖 𝐻eff, 𝜌
Feedback−induced nonlinear Hamiltonian

+ 𝐿 𝜌𝐿 † − 𝐿 †𝐿 𝜌 2 − 𝜌𝐿 †𝐿 2 
Decoherence induced by the input vacuum field

 

 
+ 𝑁 + 1 𝐷 𝐿 𝜌 + 𝑁𝐷 𝐿 † 𝜌 + 𝑀∗ 𝐿 𝜌𝐿 − 𝐿 2𝜌 2 − 𝜌𝐿 2 2 + h.c.

Decoherence induced by the quantum amplifier

 

𝜌  = −𝑖 𝐻, 𝜌 + 𝐿𝜌𝐿† − 𝐿†𝐿𝜌 2 − 𝜌𝐿†𝐿 2  

Uncontrolled system dynamics 

Controlled system dynamics 



Main difficulties for analysis 

 

 Non-commutative quantum probability theory 

 

 Analysis of quantum nonlinearity 

 

 Noise is defined on the infinite-dimentional quantum Fock 

space  

 

 Hard to obtain a quantum closed-form equation 



Key Derivations (I) 

1. Obtain the quantum stochastic diffirential equation (QSDE) of   

    the total system including the input field and the amplifier  

 
𝑑𝑈 = −𝑖𝐻 𝑑𝑡 − 1

2
𝐿 †𝐿 𝑑𝑡 + 𝑑𝐵†𝐿 − 𝐿 †𝑑𝐵 + tr[ 𝑆 − 𝐼 𝑑Λ] 𝑈  

𝑑𝐵𝑑𝐵† = 𝑑𝑡, 𝑑𝐵†𝑑𝐵 = 0,  
𝑑𝐵𝑑Λ = 𝑑𝐵,  𝑑Λ𝑑𝐵 = 0,  
𝑑𝐵†𝑑Λ = 0,  𝑑Λ𝑑𝐵† = 𝑑𝐵†,  
𝑑Λ𝑑Λ = 𝑑Λ 

Quantum Ito rule 

Classical Ito rule 

𝑑𝑊𝑑𝑊∗ = 𝑑𝑊∗𝑑𝑊 = 𝑑𝑡 

𝑆 = 𝑆2, 𝐿 = 𝐿𝑓 + 𝑆 κ𝑐 + 𝐿 ,𝐻 = 𝐻 + 𝐻𝑐 +
𝑖
2
κ 𝐿†𝑐 − 𝑐†𝐿  

+𝑖
2 𝐿† + κ𝑐† 𝑆†𝐿𝑓 − 𝐿 𝑆(𝐿 + κ𝑐)𝑓

†
 



Key Derivations (II) 

2. Using singular perturbation method to adiabatically eliminate   

    the degrees of freedom of the quantum amplifier  

 𝑈 = 𝑈𝑉ε Decomposition 

𝑑𝑈 = −𝑖 𝐻 + 𝑖

2
𝐿†𝑆†𝐿𝑓 + −𝑖 𝐿† − 𝐿 𝑆𝑓

† − 2𝐴𝑒𝑖ϕ 𝑎ε + h. c. 𝑈dt 

Quantum Ornstein-Uhlenbeck noise 

𝑎ε =
ε
κ0

𝐺1 𝑐 + 𝑐† + 𝐺2 𝑐 − 𝑐† + κ0
κ0−ξ0

 𝐺1 𝑡 − τ [𝑆𝑑𝐵τ 

𝑡

0

 

+1
2 𝐿 + 𝑆†𝐿𝑓 𝑑τ + κ0

κ0+ξ0
 𝐺2 𝑡 − τ 1

2 𝐿 + 𝑆†𝐿𝑓 𝑑τ + 𝑆𝑑𝐵τ

𝑡

0

 

𝐺1,2 τ =
κ0 ± ξ0
4ε

exp −
κ0 ± ξ0 τ

2ε
 δ(τ),   ε 0 



Key Derivations (III) 

3. Average out all the noises to obtain the master equation 

] Detailed derivations can be found in IEEE Trans. Automat. Contr. 

57, 1997 (2012). 

 

 

Cannot be obtained from HP model or quantum transfer function 

𝜌  = −𝑖[𝐻eff, 𝜌] + 𝐷 𝐿 𝜌 + 𝑁 + 1 𝐷 𝐿 𝜌 + 𝑁𝐷 𝐿 †  

          +𝑀∗ 𝐿 𝜌𝐿 − 𝐿 2𝜌 2 − 𝜌𝐿 2 2 + h.c. 

𝜌 = 𝑈𝜌0𝑈
†;  𝐷 𝐿 𝜌 = 𝐿 𝜌𝐿 † − 𝐿 †𝐿 𝜌 2 − 𝜌𝐿 †𝐿 2  

𝐿 = 𝐿 − 𝑆†𝐿𝑓;  𝑁 = 𝐺0 − 1;   𝑀 = 𝐺0 − 1 𝐺0 

Extended quantum Ito rule 

𝑑𝐵 𝑑𝐵 † = 𝑁 + 1 𝑑𝑡, 𝑑𝐵 †𝑑𝐵 = 𝑁𝑑𝑡, 𝑑𝐵 𝑑𝐵 = 𝑀𝑑𝑡 



Is it possible for experimental implementation ? 



TLR 

Generation of Kerr effect 

  

 

Potential applications: superposed quantum state 

preparation, quantum non-demolition measurement… 

𝝌 is 104-105 stronger 

than its natural value! 

𝐻eff = χ 𝑎†𝑎
2

Induced Kerr term

                  

           + 𝜔𝑎 − 𝛿 𝑎†𝑎 

𝛿 = 2𝐴 𝐺0𝛾𝑎 ,  

χ = 2 𝐺0𝛾𝑎 

rf - SQUID 

𝒃out 

Phase shifter 𝒃 out 

𝑨,𝝓 

𝒃in 

Amplifier 



Synthesis of high-order Hamiltonian 

𝐻eff = 𝜔𝑎𝑎
†𝑎 + χ𝑘

𝑎† + 𝑎

2

𝑘4

𝑘=1
Induced nonlinear terms

 

χ1 = 𝐴4 2𝛾, 

χ2 = 4𝐴1 𝐺1𝛾1 − 2𝐴3 𝐺3𝛾3, 

χ3 = 2 𝐺3𝛾𝛾3, 

χ4 = 2 𝐺1𝛾𝛾1 

Applications: nonlinear quantum optics and quantum 

information 



Construction of non-classical light 

 

1) Highly non-classical light can be generated.  

 

2)    Sub-Poisson statistics and photon antibunching can be observed; 

 



Open Quantum System 

( ) ( ) (0)t U t 

CLOSED SYSTEM 

Unitary evolution of total system (Closed) 

ENVIRONMENT 

Exchange of 

- Energy 

- Matter 

- Information 

ˆ ˆ ˆˆ   ENVIRONMENTSYSTEM INTERACTIONH H HH



What is Decoherence ? 

Environment State 
e|

2

|| 

1| e 0| e

2

|| 0 e 
2

|| 1 e

Interaction 

Pure State 
Entanglement causes mixed state 

  Loss of quantum superposition 

  Extremely quick for macroscopic systems  

  Quantum analog of damping / friction  



Control System Model 

Composite-system Schrödinger Equation 

1

( )
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u

Hamiltonian for the environment 

Interaction Hamiltonian between the system 

and the environment 

Free Hamiltonian of the system 

Semiclassical  

Control Hamiltonians 

controls State of the 

Total System 



Decoherence is NOT Classical Noise 

Consider the classical system 

( ) ( ) ( ) ( ) ( )   i i

i

x f x u t g x w t p x

Dimensionality of  the system remains the same 

with the ADDTION of classical noise. 

Dimensionality of the quantum system changes from 

dim HS  to dim HS x dim HE 

Leads to entanglement and loss of information 

classical noise 



 

 

 

 

The Second Problem: 

Disturbance Decoupling 

Coherent Quantum 

Feedback Rejection 

of Non-Markovian 

Noises 



Motivations 

 Why quantum information revolution has not 

come? 

     Decoherence 

How to utilize coherent feedback scheme to 

suppress non-Markovian decoherence ? 

 

 

 

 
             Bath 

System 

Markovian 

 

 

 

 
             Bath 

System 

Non-Markovian 



Objectives 

Model Non-Markovian Open Quantum Systems 

for Coherent Feedback; 

 

 Investigate Mechanism of Non-Markovian Noises  

Rejection via Coherent Feedback. 



Backgrounds (I) 

 
   NM Decoherence Control 

 Dynamical Decoupling  Approach 

 Optimization Method 

 

Disadvantage:  

high energy cost;  

heavy computation 

burden. 

System 

Bath 

Controller 

Open Loop Control 

 

 

 

 

 

Quantum 

 

 

 

 

 

Classical 



        

 

 

 

 

 

 

 

Quantum 

 

 

Backgrounds (II) 

    Quantum Feedback Control (QFC) 

Plant 

Controll

er Control  

laws 

Measurem

ent 

informat

ion 

Measurement-based QFC 

Plant 

Controll

er 

Control  

actions 

informat

ion 

 

 

Classical 

       Quantum 

 

 

Existing models are not applicable to non-Markovian  

open quantum systems!  

Coherent QFC 



Our Scheme 

Bath 

 

 

 

 

 System 
Control 

Source 

System 

Bath 
Control 

Source 

tunable 

Structured Bath 

The noise spectrum  

of structured bath is 

promising to be  

modulated. 

 

The introduced control 

source not only interacts 

with the system but also 

couples with the noise bath. 



In Summary 

 

Every good regulator incorporates a model 

of the outside world! 

Internal Model Principle 



 

Infinite Dimensional System 

 

Integral-differential Equation (Memory Effect) 

 

Colored Noises 

 

 Phys. Rev. A 86, 052304 (2012). 

http://link.aps.org/doi/10.1103/PhysRevA.86.052304. 

 

Main Difficulties 

http://link.aps.org/doi/10.1103/PhysRevA.86.052304


Modeling of Coherent Feedback 

Loop 

System 

Bath 
Control 

Source 

tunable 

𝑯𝑺 

𝑯𝑺𝑪 𝑯𝑺𝑩 

𝑯𝑪 𝑯𝑩 
𝑯𝑩𝑪 

• Total Hamiltonian and Diagram 

Resonance assumption 

𝑯 = 𝑯𝑺 +𝑯𝑩 +𝑯𝑪 +𝑯𝑺𝑩 +𝑯𝑺𝑪 +𝑯𝑩𝑪 

𝐰𝐡𝐞𝐫𝐞  𝑯𝑺 = 𝝎𝒂𝒂 𝒂†  

𝑯𝑩 +𝑯𝑪 =   𝝎𝜶𝒌𝒃 𝒃𝜶𝒌𝜶𝒌
†   

𝒌𝜶=𝑩,𝑪

 

𝑯𝑺𝑩 +𝑯𝑺𝑪 =    

       𝑽𝜶𝒌𝒂𝒃 +𝜶𝒌
†   𝑽 𝒂 𝒃𝛼𝑘

†
𝜶𝒌
∗   

𝒌𝜶=𝑩,𝑪

 

𝑯𝑩𝑪 =  𝑭𝒌𝒌′𝒃𝑩𝒌𝒃 +
𝑪𝒌′
†    𝑭 𝒃 𝒃𝑪𝒌′𝑩𝒌

†   
𝒌𝒌′
∗    

𝒌′𝒌

 

𝑭𝒌𝒌′ = 𝒇𝒌 ∙ 𝜹 𝒌, 𝒌′ ,  𝒇𝒌 = 𝒓𝒆𝐢𝜽 



 

𝒂 𝒕 = −i𝝎𝒂 𝒂(𝒕) 
𝐒𝐲𝐬𝐭𝐞𝐦
𝐎𝐩𝐞𝐫𝐚𝐭𝐨𝐫

− 𝐝𝝉
𝒕

𝟎

𝑮(𝒕 − 𝝉)
𝐌𝐞𝐦𝐨𝐫𝐲 𝐊𝐞𝐫𝐧𝐞𝐥 

𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧

𝒂 𝝉 − i 𝒃𝒏(𝒕)
𝐄𝐪𝐮𝐢𝐯𝐚𝐥𝐞𝐧𝐭

𝐍𝐨𝐢𝐬𝐞

 

• NM Quantum Langevin Equation: 

Modeling of Coherent Feedback 

Loop 

𝒂 𝒕 = 𝒖 𝒕 𝒂 𝟎 + 𝐝𝝉 𝒖 𝒕 − 𝝉
𝒕

𝟎

𝒃𝒏(𝝉) 

𝒖 𝒕 = −𝐢𝝎𝒂𝒖 𝒕 −  𝐝𝝉𝑮 𝒕 − 𝝉 𝒖 𝝉
𝒕

𝟎

, 𝒖 𝟎 = 𝟏 

Noise spectrum 

and control 

parameters are 

combined in 𝑮(𝝉). 

which can be solved as 

where  Green function  𝒖 𝒕   

satisfies 



NM Decoherence Suppression 

• Memory Kernel Function without Feedback 

where 

𝑮 𝝉 =  
𝐝𝝎

𝟐𝝅
𝑱 𝝎 𝒆−𝐢𝝎𝝉

𝜴

 

𝑱 𝝎 = 𝟐𝝅𝝔(𝝎)(|𝑽𝑩(𝝎)|
𝟐 + |𝑽𝑪(𝝎)|

𝟐) 

𝝎 

𝑱 𝝎  

𝝎𝒂 is the system working frequency 
𝝎𝒂 

Physically,  decoherence is 

caused by the resonance 

between the system's 

working frequency and the 

noise spectrum. 



NM Decoherence Suppression 

• Memory Kernel Function with Feedback 

𝑮 𝝉 =  
𝐝𝝎

𝟐𝝅
𝑱+ 𝝎− 𝒓 𝒆−𝐢𝝎𝝉 + 

𝐝𝝎

𝟐𝝅

𝝎𝑼−𝒓

𝝎𝑳−𝒓

𝑱−(𝝎 + 𝒓)𝒆−𝐢𝝎𝝉
𝝎𝑼+𝒓

𝝎𝑳+𝒓

 

𝝎 

𝑱+(𝝎 − 𝒓) 

𝑱 𝝎  

𝑱−(𝝎 + 𝒓) 

Noise free band 

𝝎𝒂 is the system working frequency 
𝝎𝒂 

𝑱± 𝝎 = 𝝅𝝔 𝝎 |𝑽𝑩(𝝎) ± 𝑽𝑪(𝝎)𝒆
−𝐢𝜽|𝟐 where 

The effectiveness of 

decoherence 

suppression depends on 

how close the working 

frequency is to the 

nearest edge of the 

noise free band 



Example of Photonic Crystals 

Cavity Waveguide 2 

Waveguide 1 Coupler 

Angular Frequency of 

the Cavity: 
Central Frequency of 

the Baths 
Coupling Strength 

Density of the State 

Noise Band 

𝝎𝒂 = 𝟏𝟎𝐆𝐇𝐳 

𝝎𝜶 = 𝟏𝟎𝐆𝐇𝐳, 𝜶 = 𝑩, 𝑪 

𝑽𝜶 𝝎 =
𝜼

𝟐𝝅
𝟒𝝃 −𝜶

𝟐 (𝝎 − 𝝎𝜶)
𝟐 

𝝔𝜶 𝝎 =
𝟏

𝟒𝝃 −𝜶
𝟐 (𝝎 −𝝎𝜶)

𝟐
 

𝝃𝜶 = 𝟎. 𝟑𝐆𝐇𝐳, 𝜶 = 𝑩, 𝑪 
[𝝎𝜶 − 𝟐𝝃𝜶, 𝝎𝜶 + 𝟐𝝃𝜶] 



Example of Photonic Crystals 

The variation of the spectrum and the dynamics of |u(t)| 

under various feedback parameters r, 𝜼 = 𝟎. 𝟑, θ=𝝅/𝟒  

• Results of Decoherence Suppression 



Conclusions 

Main contributions 

 1) Quantum feedback nonlinearization (QFN): different from the  

          traditional feedback linearization in classical control !   

 2) A new non-Markovian coherent feedback model (no one discussed before) 

 3) QFN can achieve more than the traditional physical design. 

Open up new dimensions of research 

    1) Systematic design of coherent feedback control; 

     2) Frequency domain synthesis and design methods for quantum control; 

3) Applications to quantum optics and quantum information.  

4) Applications to solid-state-based quantum information processing.  
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